Google показала робота, играющего в настольный теннис не хуже человека

Спорт является отличным испытанием для роботов. Например, ежегодный футбольный турнир RoboCup проводится с середины 1990-х годов. А настольный теннис используется для сравнительного тестирования роботизированных манипуляторов с 1980-х. От робота требуются высокая подвижность, быстрая реакция и стратегическое мышление. Робот, представленный Google DeepMind, показал уровень среднего любителя, но с профессионалами справиться не смог.

Google показала робота, играющего в настольный теннис не хуже человека

В недавно опубликованной статье под названием «Достижение уровня человеческого конкурентоспособного робота для настольного тенниса» команда Google DeepMind Robotics представила робота, «способного соревноваться в спорте с людьми на человеческом уровне, и он представляет собой веху в обучении и управлении роботами».

Google показала робота, играющего в настольный теннис не хуже человека

Во время тестирования робот смог победить всех игроков начального уровня, с которыми столкнулся. С игроками среднего уровня робот выиграл 55 % матчей. Однако профессионалам робот проиграл все поединки. В целом система выиграла 45 % из 29 сыгранных матчей. Самый большой недостаток системы — запоздалая реакция на быстрые мячи. Робот также испытывает трудности с игрой бэкхендом, приёмом высоких и низких мячей, и оценкой вращения мяча.

«Чтобы устранить ограничения задержки, которые мешают времени реакции робота на быстрые мячи, мы предлагаем исследовать расширенные алгоритмы управления и аппаратные оптимизации, — полагают разработчики. — Сюда может входить изучение прогностических моделей для прогнозирования траекторий мячей или реализация более быстрых протоколов связи между датчиками и исполнительными механизмами робота».

Google показала робота, играющего в настольный теннис не хуже человека

DeepMind уверена в перспективности своей разработки: «Это лишь небольшой шаг к давней цели в робототехнике — достижению производительности человеческого уровня по многим полезным навыкам реального мира. Ещё многое предстоит сделать, чтобы последовательно достигать производительности человеческого уровня по отдельным задачам, а затем и выше, создавая универсальных роботов, способных выполнять множество полезных задач, умело и безопасно взаимодействуя с людьми в реальном мире».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *